Application of Chitosan-Based Polysaccharide Biomaterials in Tissue Engineering

Chitosan-Based Polysaccharide Biomaterials

Authors

  • Azeem Azam Institute of Zoology, University of the Punjab, Lahore, Pakistan
  • Shumaila Ziafat Institute of Biochemical Engineering, University of Science and Technology of China, Hefei, China
  • Ata ul Mustafa Fahid Institute of Zoology, University of the Punjab, Lahore, Pakistan
  • Farhan Anjum Institute of Zoology, University of the Punjab, Lahore, Pakistan
  • Hamza Faseeh Institute of Zoology, University of the Punjab, Lahore, Pakistan
  • Rabia Bano Department of Zoology, University of Education, Lahore, Pakistan
  • Attiq ur Rehman Department of Zoology, University of Education, Lahore, Pakistan
  • Amina Bashir Institute of Zoology, University of the Punjab, Lahore, Pakistan

DOI:

https://doi.org/10.54393/pjhs.v4i09.1038

Keywords:

Chitosan, Biomaterials, Tissue Engineering, Regenerative Medicine, Biofabrication, Nanotechnology

Abstract

Chitosan-based polysaccharide biomaterials have gained interest as viable options in tissue engineering due to their distinctive properties and wide range of potential applications. Biomaterials play a crucial role in regenerative medicine because they foster an environment conducive to cell growth and tissue repair. The chitin-derived polysaccharide chitosan is superior than synthetic materials in several ways: it has a similar structure to the extracellular matrix, is biocompatible, biodegradable, antimicrobial, and can incorporate bioactive chemicals. In this article, check how chitosan can be used in tissue engineering as a scaffold for different types of tissue, a hydrogel for wound healing, and a carrier for gene therapy, stem cell culture, and drug delivery. Scaffolds made from chitosan have shown tremendous promise in tissue engineering for the neurological system, bone and cartilage transplantation, and skin regeneration. Hydrogels made from chitosan have been shown to be useful in treating wounds and stopping bleeding. Chitosan's medicinal potential in gene therapy, stem cell culture, and targeted medication administration is further enhanced by the addition of bioactive components such as growth factors, genes, or medicines. In addition, using chitosan in tissue engineering can pave the way for future developments in stem cell techniques, nanotechnology, biofabrication, and 3D bioprinting, among other areas of study. These advances may one day lead to individualized and highly effective therapies for tissue repair and regeneration. The use of chitosan in tissue engineering has the potential to advance regenerative medicine and address the growing demand for more effective techniques to heal damaged tissues. Tissue engineers can revolutionize the field of regenerative medicine and enhance patient outcomes by taking use of chitosan's adaptability and bioactivity to create cutting-edge biomaterials and therapeutic techniques.

References

Cohen S, Baño MC, Cima LG, Allcock HR, Vacanti JP, Vacanti CA, et al. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clinical Materials. 1993 Jan; 13(1-4): 3-10. doi: 10.1016/0267-6605(93)90082-I. DOI: https://doi.org/10.1016/0267-6605(93)90082-I

O'brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today. 2011 Mar; 14(3): 88-95. doi: 10.1016/S1369-7021(11)70058-X. DOI: https://doi.org/10.1016/S1369-7021(11)70058-X

Meneses J, C Silva J, R Fernandes S, Datta A, Castelo Ferreira F, Moura C, et al. A multimodal stimulation cell culture bioreactor for tissue engineering: a numerical modelling approach. Polymers. 2020 Apr; 12(4): 940. doi: 10.3390/polym12040940. DOI: https://doi.org/10.3390/polym12040940

Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. Elsevier; 2004 Aug.

Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews. 2009; 38(4): 1139-51. doi: 10.1039/b811392k. DOI: https://doi.org/10.1039/b811392k

Atala A. Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Research. 2004 May; 7(1): 15-31. doi: 10.1089/154916804323105053. DOI: https://doi.org/10.1089/154916804323105053

Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan-based nanomaterials—A short review. Carbohydrate Polymers. 2010 Sep; 82(2): 227-32. doi: 10.1016/j.carbpol.2010.04.074. DOI: https://doi.org/10.1016/j.carbpol.2010.04.074

Neumann T, Nicholson BS, Sanders JE. Tissue engineering of perfused microvessels. Microvascular Research. 2003 Jul; 66(1): 59-67. doi: 10.1016/S0026-2862(03)00040-2. DOI: https://doi.org/10.1016/S0026-2862(03)00040-2

Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nature Materials. 2009 Jun; 8(6): 457-70. doi: 10.1038/nmat2441. DOI: https://doi.org/10.1038/nmat2441

Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, et al. Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers. 2010 Jan; 79(2): 284-9. doi: 10.1016/j.carbpol.2009.08.001. DOI: https://doi.org/10.1016/j.carbpol.2009.08.001

Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003 Nov; 4(6): 1457-65. doi: 10.1021/bm034130m. DOI: https://doi.org/10.1021/bm034130m

Mourya VK, Inamdar NN, Choudhari YM. Chitooligosaccharides: Synthesis, characterization and applications. Polymer Science Series A. 2011 Jul; 53: 583-612. doi: 10.1134/S0965545X11070066. DOI: https://doi.org/10.1134/S0965545X11070066

Mahou R, Borcard F, Crivelli V, Montanari E, Passemard S, Noverraz F, et al. Tuning the properties of hydrogel microspheres by adding chemical cross-linking functionality to sodium alginate. Chemistry of Materials. 2015 Jun; 27(12): 4380-9. doi: 10.1021/acs.chemmater.5b01098. DOI: https://doi.org/10.1021/acs.chemmater.5b01098

Kumar MR, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews. 2004 Dec; 104(12): 6017-84. doi: 10.1021/cr030441b. DOI: https://doi.org/10.1021/cr030441b

Patrulea V, Ostafe V, Borchard G, Jordan O. Chitosan as a starting material for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics. 2015 Nov; 97: 417-26. doi: 10.1016/j.ejpb.2015.08.004. DOI: https://doi.org/10.1016/j.ejpb.2015.08.004

Smith R, Russo J, Fiegel J, Brogden N. Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics. 2020 Feb; 9(2): 56. doi: 10.3390/antibiotics9020056. DOI: https://doi.org/10.3390/antibiotics9020056

Lowe B, Venkatesan J, Anil S, Shim MS, Kim SK. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules. 2016 Dec; 93: 1479-87. doi: 10.1016/j.ijbiomac.2016.02.054. DOI: https://doi.org/10.1016/j.ijbiomac.2016.02.054

Croisier F and Jérôme C. Chitosan-based biomaterials for tissue engineering. European Polymer Journal. 2013 Apr; 49(4): 780-92. doi: 10.1016/j.eurpolymj.2012.12.009. DOI: https://doi.org/10.1016/j.eurpolymj.2012.12.009

Raftery RM, Woods B, Marques AL, Moreira-Silva J, Silva TH, Cryan SA, et al. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomaterialia. 2016 Oct; 43: 160-9. doi: 10.1016/j.actbio.2016.07.009. DOI: https://doi.org/10.1016/j.actbio.2016.07.009

Xu Y, Hu Y, Liu C, Yao H, Liu B, Mi S. A novel strategy for creating tissue-engineered biomimetic blood vessels using 3D bioprinting technology. Materials. 2018 Sep; 11(9): 1581. doi: 10.3390/ma11091581. DOI: https://doi.org/10.3390/ma11091581

Zia S, Mozafari M, Natasha G, Tan A, Cui Z, Seifalian AM. Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation. Critical Reviews in Biotechnology. 2016 Jul; 36(4): 705-15. doi: 10.3109/07388551.2015.1007495. DOI: https://doi.org/10.3109/07388551.2015.1007495

Dutta PK, Ravikumar MN, Dutta J. Chitin and chitosan for versatile applications. Journal of Macromolecular Science, Part C: Polymer Reviews. 2002 Aug; 42(3): 307-54. doi: 10.1081/MC-120006451. DOI: https://doi.org/10.1081/MC-120006451

Khor E and Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003 Jun; 24(13): 2339-49. doi: 10.1016/S0142-9612(03)00026-7. DOI: https://doi.org/10.1016/S0142-9612(03)00026-7

Datta D, Kumar V, Kumar S, Nagaraj R, Chaudhary N. Hydrogel Formation by an Aromatic Analogue of a β-Amyloid Fragment, Aβ16–22: A Scaffold for 3D Cell Culture. ACS Omega. 2019 Jan; 4(1): 620-7. doi: 10.1021/acsomega.8b02771. DOI: https://doi.org/10.1021/acsomega.8b02771

Aider M. Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology. 2010 Jul; 43(6): 837-42. doi: 10.1016/j.lwt.2010.01.021. DOI: https://doi.org/10.1016/j.lwt.2010.01.021

Liu Z, Liu J, Cui X, Wang X, Zhang L, Tang P. Recent advances on magnetic sensitive hydrogels in tissue engineering. Frontiers in Chemistry. 2020 Mar; 8: 124. doi: 10.3389/fchem.2020.00124. DOI: https://doi.org/10.3389/fchem.2020.00124

Gao X, Xu Z, Liu G, Wu J. Polyphenols as a versatile component in tissue engineering. Acta Biomaterialia. 2021 Jan; 119: 57-74. doi: 10.1016/j.actbio.2020.11.004. DOI: https://doi.org/10.1016/j.actbio.2020.11.004

Shi Q, Qian Z, Liu D, Sun J, Wang X, Liu H, et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Frontiers in Physiology. 2017 Nov; 8: 904. doi: 10.3389/fphys.2017.00904. DOI: https://doi.org/10.3389/fphys.2017.00904

Jayakumar R, Prabaharan M, Kumar PS, Nair SV, Tamura HJ. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances. 2011 May; 29(3): 322-37. doi: 10.1016/j.biotechadv.2011.01.005. DOI: https://doi.org/10.1016/j.biotechadv.2011.01.005

Ye G, Bao F, Zhang X, Song Z, Liao Y, Fei Y, et al. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine. 2020 Aug; 15(20): 1995-2017. doi: 10.2217/nnm-2020-0112. DOI: https://doi.org/10.2217/nnm-2020-0112

Jabbari E. Challenges for natural hydrogels in tissue engineering. Gels. 2019 May; 5(2): 30. doi: 10.3390/gels5020030. DOI: https://doi.org/10.3390/gels5020030

Garreta E, Oria R, Tarantino C, Pla-Roca M, Prado P, Fernandez-Aviles F, et al. Tissue engineering by decellularization and 3D bioprinting. Materials Today. 2017 May; 20(4): 166-78. doi: 10.1016/j.mattod.2016.12.005. DOI: https://doi.org/10.1016/j.mattod.2016.12.005

Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharmaceutica Sinica B. 2018 Jan; 8(1): 34-50. doi: 10.1016/j.apsb.2017.11.005. DOI: https://doi.org/10.1016/j.apsb.2017.11.005

Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials. 2005 Dec; 26(36): 7616-27. doi: 10.1016/j.biomaterials.2005.05.036. DOI: https://doi.org/10.1016/j.biomaterials.2005.05.036

Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Research. 2017 May; 5(1): 1-20. doi: 10.1038/boneres.2017.14. DOI: https://doi.org/10.1038/boneres.2017.14

Caló E and Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal. 2015 Apr; 65: 252-67. doi: 10.1016/j.eurpolymj.2014.11.024. DOI: https://doi.org/10.1016/j.eurpolymj.2014.11.024

Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, et al. Chitin, chitosan, and its derivatives for wound healing: old and new materials. Journal of Functional Biomaterials. 2015 Mar; 6(1): 104-42. doi: 10.3390/jfb6010104. DOI: https://doi.org/10.3390/jfb6010104

Venkatesan J, Bhatnagar I, Kim SK. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Marine Drugs. 2014 Jan; 12(1): 300-16. doi: 10.3390/md12010300. DOI: https://doi.org/10.3390/md12010300

Lu J, Chen Y, Ding M, Fan X, Hu J, Chen Y, et al. A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydrate Polymers. 2022 Feb; 277: 118871. doi: 10.1016/j.carbpol.2021.118871. DOI: https://doi.org/10.1016/j.carbpol.2021.118871

Rinaudo M. Chitin and chitosan: Properties and applications. Progress in Polymer Science. 2006 Jul; 31(7): 603-32. doi: 10.1016/j.progpolymsci.2006.06.001. DOI: https://doi.org/10.1016/j.progpolymsci.2006.06.001

Downloads

Published

2023-09-30
CITATION
DOI: 10.54393/pjhs.v4i09.1038
Published: 2023-09-30

How to Cite

Azam, A., Ziafat, S. ., Fahid, A. ul M. ., Anjum, F., Faseeh, H., Bano, R., ur Rehman, A., & Bashir, A. (2023). Application of Chitosan-Based Polysaccharide Biomaterials in Tissue Engineering: Chitosan-Based Polysaccharide Biomaterials. Pakistan Journal of Health Sciences, 4(09), 10–16. https://doi.org/10.54393/pjhs.v4i09.1038

Plaudit

Most read articles by the same author(s)