Role of Gut Microbiota in Immune System Regulation
Gut Microbiota in Immune System Regulation
DOI:
https://doi.org/10.54393/pjhs.v5i08.1904Keywords:
Gut Microbiome, Immune System, Autoimmune Diseases, Dysbiosis, ProbioticsAbstract
The human gut is a densely populated organ system that bears hundreds of microbial species, including bacteria, viruses, and various protozoans. The gut microbiome expresses enormous functional diversity based on microbial community collection. However, this has remained unexplored for a long time, but in the recent past various researches have revealed its immense significance in host metabolism and immunity. Gut microbiota metabolize undigested substances and release various metabolites in response to microbial metabolism that have a significant effect on the immune system. The balance and stability of the immune system within the body are achieved and maintained through the complex interaction between the gut microbiota and the host mucosal immune system. Upon loss of control by the immune system, dysbiosis occurs, the modulation of the microbial community, which leads to different disorders, including inflammatory bowel disease and colorectal cancer. Moreover, dysbiosis is also associated with various autoimmune diseases such as rheumatoid arthritis, diabetes mellitus, and multiple sclerosis. Despite its intricate mechanism in autoimmune diseases, various therapeutic strategies are utilized to treat chronic diseases, including prebiotics treatment, personalized probiotics therapy, fecal microbiome transplantation, and narrow-spectrum antibiotic treatment. This review discusses the interaction of gut microbiome with the immune system, how this association becomes dysregulated, its various outcomes in the form of autoimmune diseases, and therapeutic interventions to cope with it.
References
Toader C, Dobrin N, Costea D, Glavan LA, Covache-Busuioc RA, Dumitrascu DI et al. Mind, Mood and Microbiota—Gut–Brain Axis in Psychiatric Disorders. International Journal of Molecular Sciences. 2024 Mar; 25(6): 3340. doi: 10.3390/ijms25063340. DOI: https://doi.org/10.3390/ijms25063340
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philosophical Transactions of the Royal Society B. 2024 May; 379(1901): 20230071. doi: 10.1098/rstb.2023.0071. DOI: https://doi.org/10.1098/rstb.2023.0071
Zhang X, Qiao Y, Wang M, Liang X, Zhang M, Li C et al. The influence of genetic and acquired factors on the vulnerability to develop depression: a review. Bioscience Reports. 2023 May; 43(5): BSR20222644. doi: 10.1042/BSR20222644. DOI: https://doi.org/10.1042/BSR20222644
Kononova S, Litvinova E, Vakhitov T, Skalinskaya M, Sitkin S. Acceptive immunity: the role of fucosylated glycans in human host–microbiome interactions. International Journal of Molecular Sciences. 2021 Apr; 22(8): 3854. doi: 10.3390/ijms22083854. DOI: https://doi.org/10.3390/ijms22083854
Huus KE, Petersen C, Finlay BB. Diversity and dynamism of IgA− microbiota interactions. Nature Reviews Immunology. 2021 Aug; 21(8): 514-25. doi: 10.1038/s41577-021-00506-1. DOI: https://doi.org/10.1038/s41577-021-00506-1
Strugnell RA. When secretion turns into excretion–the different roles of IgA. Frontiers in Immunology. 2022 Dec; 13: 1076312. doi: 10.3389/fimmu.2022.1076312. DOI: https://doi.org/10.3389/fimmu.2022.1076312
Shao T, Hsu R, Rafizadeh DL, Wang L, Bowlus CL, Kumar N et al. The gut ecosystem and immune tolerance. Journal of Autoimmunity. 2023 Sep; 141: 103114. doi: 10.1016/j.jaut.2023.103114. DOI: https://doi.org/10.1016/j.jaut.2023.103114
Jans M and Vereecke L. A guide to germ‐free and gnotobiotic mouse technology to study health and disease. The FEBS Journal. 2024 Mar. doi: 10.1111/febs.17124. DOI: https://doi.org/10.1111/febs.17124
Gholamzad A, Khakpour N, Hashemi SM, Goudarzi Y, Ahmadi P, Gholamzad M et al. Exploring the virome: An integral part of human health and disease. Pathology-Research and Practice. 2024 Jul; 260: 155466. doi: 10.1016/j.prp.2024.155466. DOI: https://doi.org/10.1016/j.prp.2024.155466
Lu R and Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity. 2024 Dec; 57(1): 2378876. doi: 10.1080/08916934.2024.2378876. DOI: https://doi.org/10.1080/08916934.2024.2378876
Zhang ML, Li WX, Wang XY, Wu YL, Chen XF, Tang JF et al. The role of gut microbes and their metabolites in immune-related diseases. 2023 Oct; 103.
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis. Cells. 2023 Mar; 12(5); 793. doi: 10.3390/cells12050793. DOI: https://doi.org/10.3390/cells12050793
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbie G et al. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control. 2024 Jun; 31: 10732748241263650. doi: 10.1177/10732748241263650. DOI: https://doi.org/10.1177/10732748241263650
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants. 2021 Jan; 10(2): 188. doi: 10.3390/antiox10020188. DOI: https://doi.org/10.3390/antiox10020188
Cho JY, Liu R, Macbeth JC, Hsiao A. The interface of Vibrio cholerae and the gut microbiome. Gut Microbes. 2021 Jan; 13(1): 1937015. doi: 10.1080/19490976.2021.1937015. DOI: https://doi.org/10.1080/19490976.2021.1937015
Fang J, Wang H, Xue Z, Cheng Y, Zhang X. PPARγ: The central mucus barrier coordinator in ulcerative colitis. Inflammatory Bowel Diseases. 2021 May; 27(5): 732-41. doi: 10.1093/ibd/izaa273. DOI: https://doi.org/10.1093/ibd/izaa273
Calvo-Barreiro L, Zhang L, Abdel-Rahman SA, Naik SP, Gabr M. Gut microbial-derived metabolites as immune modulators of T helper 17 and regulatory T cells. International Journal of Molecular Sciences. 2023 Jan; 24(2): 1806. doi: 10.3390/ijms24021806. DOI: https://doi.org/10.3390/ijms24021806
Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T et al. Cholesterol metabolic reprogramming in cancer and its pharmacological modulation as therapeutic strategy. Frontiers in oncology. 2021 May; 11: 682911. doi: 10.3389/fonc.2021.682911. DOI: https://doi.org/10.3389/fonc.2021.682911
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe?. World Journal of Gastroenterology. 2023 Jan; 29(1): 19-42. doi: 10.3748/wjg.v29.i1.19. DOI: https://doi.org/10.3748/wjg.v29.i1.19
Zhang Y, Zhang J, Duan L. The role of microbiota-mitochondria crosstalk in pathogenesis and therapy of intestinal diseases. Pharmacological Research. 2022 Dec; 186: 106530. doi: 10.1016/j.phrs.2022.106530. DOI: https://doi.org/10.1016/j.phrs.2022.106530
Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiology. 2024 May; 24(1): 161. doi: 10.1186/s12866-024-03255-y. DOI: https://doi.org/10.1186/s12866-024-03255-y
Basso PJ, Gauthier T, Palomares F, López-Enríquez S, Tsai S. Immunometabolism: bridging the gap between immunology and nutrition. Frontiers in Nutrition. 2024 Jun; 11: 1436894. doi: 10.3389/fnut.2024.1436894. DOI: https://doi.org/10.3389/fnut.2024.1436894
González-Soltero R, Bailén M, de Lucas B, Ramírez-Goercke MI, Pareja-Galeano H, Larrosa M. Role of oral and gut microbiota in dietary nitrate metabolism and its impact on sports performance. Nutrients. 2020 Nov; 12(12): 3611. doi: 10.3390/nu12123611. DOI: https://doi.org/10.3390/nu12123611
Aljahdali NH, Sanad YM, Han J, Foley SL. Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota. BMC Microbiology. 2020 Dec; 20: 1-5. doi: 10.1186/s12866-020-02008-x. DOI: https://doi.org/10.1186/s12866-020-02008-x
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health. 2023 Aug; 10(3): 710. doi: 10.3934/publichealth.2023049. DOI: https://doi.org/10.3934/publichealth.2023049
Wicherska-Pawłowska K, Wróbel T, Rybka J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. International Journal of Molecular Sciences. 2021 Dec; 22(24): 13397. doi: 10.3390/ijms222413397. DOI: https://doi.org/10.3390/ijms222413397
Yue B, Luo X, Yu Z, Mani S, Wang Z, Dou W. Inflammatory bowel disease: a potential result from the collusion between gut microbiota and mucosal immune system. Microorganisms. 2019 Oct; 7(10): 440. doi: 10.3390/microorganisms7100440. DOI: https://doi.org/10.3390/microorganisms7100440
Jannuzzi GP, De Almeida JR, Paulo LN, De Almeida SR, Ferreira KS. Intracellular PRRs activation in targeting the immune response against fungal infections. Frontiers in Cellular and Infection Microbiology. 2020 Oct; 10 :591970. doi: 10.3389/fcimb.2020.591970. DOI: https://doi.org/10.3389/fcimb.2020.591970
Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. In Seminars in Cancer Biology. 2022 Nov; 86: 513-531. doi: 10.1016/j.semcancer.2022.02.008. DOI: https://doi.org/10.1016/j.semcancer.2022.02.008
A. Rahman NA, Balasubramaniam VR, Yap WB. Potential of Interleukin (IL)-12 Group as Antivirals: Severe Viral Disease Prevention and Management. International Journal of Molecular Sciences. 2023 Apr; 24(8): 7350. doi: 10.3390/ijms24087350. DOI: https://doi.org/10.3390/ijms24087350
Kumar V. Immune Homeostasis: Methods and Protocols. Atlanta GA, USA: Springer Nature; 2024. doi: 10.1007/978-1-0716-3754-8. DOI: https://doi.org/10.1007/978-1-0716-3754-8
Fernández-Tomé S, Ortega Moreno L, Chaparro M, Gisbert JP. Gut microbiota and dietary factors as modulators of the mucus layer in inflammatory bowel disease. International Journal of Molecular Sciences. 2021 Sep; 22(19): 10224. doi: 10.3390/ijms221910224. DOI: https://doi.org/10.3390/ijms221910224
Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World Journal of Virology. 2023 Mar; 12(2): 68-90. doi: 10.5501/wjv.v12.i2.68. DOI: https://doi.org/10.5501/wjv.v12.i2.68
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK et al. The intestinal immune system and gut barrier function in obesity and ageing. The Federation of European Biochemical Societies Journal. 2023 Sep; 290(17): 4163-86. doi: 10.1111/febs.16558. DOI: https://doi.org/10.1111/febs.16558
Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomedicine & Pharmacotherapy. 2023 Aug; 164: 114985. doi: 10.1016/j.biopha.2023.114985. DOI: https://doi.org/10.1016/j.biopha.2023.114985
Takeuchi T, Nakanishi Y, Ohno H. Microbial Metabolites and Gut Immunology. Annual Review of Immunology. 2024 Jun; 42(1): 153-78. doi: 10.1146/annurev-immunol-090222-102035. DOI: https://doi.org/10.1146/annurev-immunol-090222-102035
Gonzalez C, Williamson S, Gammon ST, Glazer S, Rhee JH et al. TLR5 agonists enhance anti-tumor immunity and overcome resistance to immune checkpoint therapy. Communications Biology. 2023 Jan; 6(1): 31. doi: 10.1038/s42003-022-04403-8. DOI: https://doi.org/10.1038/s42003-022-04403-8
Rivera CE, Zhou Y, Chupp DP, Yan H, Fisher AD, Simon R et al. Intrinsic B cell TLR-BCR linked coengagement induces class-switched, hypermutated, neutralizing antibody responses in absence of T cells. Science Advances. 2023 Apr; 9(17): eade8928. doi: 10.1126/sciadv.ade8928. DOI: https://doi.org/10.1126/sciadv.ade8928
Capitani N and Baldari CT. The immunological synapse: an emerging target for immune evasion by bacterial pathogens. Frontiers in Immunology. 2022 Jul; 13: 943344. doi: 10.3389/fimmu.2022.943344. DOI: https://doi.org/10.3389/fimmu.2022.943344
Zanna MY, Yasmin AR, Omar AR, Arshad SS, Mariatulqabtiah AR, Nur-Fazila et al. Review of dendritic cells, their role in clinical immunology, and distribution in various animal species. International Journal of Molecular Sciences. 2021 Jul; 22(15): 8044. doi: 10.3390/ijms22158044. DOI: https://doi.org/10.3390/ijms22158044
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. Frontiers in Immunology. 2022 Mar; 13: 812774. doi: 10.3389/fimmu.2022.812774. DOI: https://doi.org/10.3389/fimmu.2022.812774
Dicks LM and Vermeulen W. Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses. 2024 Mar; 16(3): 478. doi: 10.3390/v16030478. DOI: https://doi.org/10.3390/v16030478
Li M, Huang X, Wen J, Chen S, Wu X, Ma W et al. Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydrate Polymers. 2023 Apr; 305: 120533. doi: 10.1016/j.carbpol.2022.120533. DOI: https://doi.org/10.1016/j.carbpol.2022.120533
Nguyen NT, Jiang Y, McQuade JL. Eating away cancer: the potential of diet and the microbiome for shaping immunotherapy outcome. Frontiers in Immunology. 2024 May; 15: 1409414. doi: 10.3389/fimmu.2024.1409414. DOI: https://doi.org/10.3389/fimmu.2024.1409414
Adhikary S, Esmeeta A, Dey A, Banerjee A, Saha B, Gopan P et al. Impacts of gut microbiota alteration on age-related chronic liver diseases. Digestive and Liver Disease. 2024 Jan; 56(1): 112-22. doi: 10.1016/j.dld.2023.06.017. DOI: https://doi.org/10.1016/j.dld.2023.06.017
Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SR et al. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Frontiers in Cellular and Infection Microbiology. 2021 Dec; 11: 716299. doi: 10.3389/fcimb.2021.716299. DOI: https://doi.org/10.3389/fcimb.2021.716299
Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 2021 Mar; 70(3): 595-605. doi: 10.1136/gutjnl-2020-321747. DOI: https://doi.org/10.1136/gutjnl-2020-321747
Ferrier S, Harwood TD, Ware C, Hoskins AJ. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecological Indicators. 2020 Oct; 117: 106554. doi: 10.1016/j.ecolind.2020.106554. DOI: https://doi.org/10.1016/j.ecolind.2020.106554
Chen H, Liu K, Yang E, Chen J, Gu Y, Wu S et al. A critical review on microbial ecology in the novel biological nitrogen removal process: Dynamic balance of complex functional microbes for nitrogen removal. Science of the Total Environment. 2023 Jan; 857: 159462. doi: 10.1016/j.scitotenv.2022.159462. DOI: https://doi.org/10.1016/j.scitotenv.2022.159462
Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. Journal of neurogastroenterology and motility. 2021 Jan; 27(1): 19-34. doi: 10.5056/jnm20149. DOI: https://doi.org/10.5056/jnm20149
Ma J, Piao X, Mahfuz S, Long S, Wang J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition. 2022 Jun; 9: 159-74. doi: 10.1016/j.aninu.2021.09.012. DOI: https://doi.org/10.1016/j.aninu.2021.09.012
Wang H, Huang X, Tan H, Chen X, Chen C, Nie S. Interaction between dietary fiber and bifidobacteria in promoting intestinal health. Food chemistry. 2022 Nov; 393: 133407. doi: 10.1016/j.foodchem.2022.133407. DOI: https://doi.org/10.1016/j.foodchem.2022.133407
Colquhoun C, Duncan M, Grant G. Inflammatory bowel diseases: host-microbial-environmental interactions in dysbiosis. Diseases. 2020 May; 8(2): 13. doi: 10.3390/diseases8020013. DOI: https://doi.org/10.3390/diseases8020013
Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Critical Reviews in Food Science and Nutrition. 2022 Feb; 62(6): 1427-52. doi: 10.1080/10408398.2020.1843396. DOI: https://doi.org/10.1080/10408398.2020.1843396
Shaw C, Hess M, Weimer BC. Two-component systems regulate bacterial virulence in response to the host gastrointestinal environment and metabolic cues. Virulence. 2022 Dec; 13(1): 1666-80. doi: 10.1080/21505594.2022.2127196. DOI: https://doi.org/10.1080/21505594.2022.2127196
Mey AR, Gómez-Garzón C, Payne SM. Iron transport and metabolism in Escherichia, Shigella, and Salmonella. EcoSal Plus. 2021 Dec; 9(2): eESP-0034. doi: 10.1128/ecosalplus.ESP-0034-2020. DOI: https://doi.org/10.1128/ecosalplus.ESP-0034-2020
Koosha RZ, Fazel P, Sedighian H, Behzadi E, Ch MH, Fooladi AA. The impact of the gut microbiome on toxigenic bacteria. Microbial Pathogenesis. 2021 Nov; 160: 105188. doi: 10.1016/j.micpath.2021.105188. DOI: https://doi.org/10.1016/j.micpath.2021.105188
Hamilton-Williams EE, Lorca GL, Norris JM, Dunne JL. A triple threat? The role of diet, nutrition, and the microbiota in T1D pathogenesis. Frontiers in Nutrition. 2021 Apr; 8: 600756. doi: 10.3389/fnut.2021.600756. DOI: https://doi.org/10.3389/fnut.2021.600756
Yoo JY, Groer M, Dutra SV, Sarkar A, McSkimming DI, Yoo, JY. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. Microorganisms. 2020 Dec; 8(12): 2046. doi: 10.3390/microorganisms8122046. DOI: https://doi.org/10.3390/microorganisms8122046
Kaur H and Ali SA. Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food and Function. 2022 May; 13(14): 7423-47. doi: 10.1039/D2FO00911K. DOI: https://doi.org/10.1039/D2FO00911K
Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT et al. Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in Microbiology. 2022 Sep; 13: 999001. doi: 10.3389/fmicb.2022.999001. DOI: https://doi.org/10.3389/fmicb.2022.999001
Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K et al. Gut microbiota influence tumor development and Alter interactions with the human immune system. Journal of Experimental & Clinical Cancer Research. 2021 Dec; 40: 1-9. doi: 10.1186/s13046-021-01845-6. DOI: https://doi.org/10.1186/s13046-021-01845-6
Rogala AR, Oka A, Sartor RB. Strategies to dissect host-microbial immune interactions that determine mucosal homeostasis vs. intestinal inflammation in gnotobiotic mice. Frontiers in Immunology. 2020 Feb; 11: 214. doi: 10.3389/fimmu.2020.00214. DOI: https://doi.org/10.3389/fimmu.2020.00214
Wiertsema SP, Van Bergenhenegouwen J, Garssen J, Knippels LM. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 2021 Mar; 13(3): 886. doi: 10.3390/nu13030886. DOI: https://doi.org/10.3390/nu13030886
Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal–oral transmission of SARS-CoV-2. Nature Reviews Gastroenterology & Hepatology. 2021 Apr; 18(4): 269-83. doi: 10.1038/s41575-021-00416-6. DOI: https://doi.org/10.1038/s41575-021-00416-6
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K et al. The role of gut dysbiosis in the loss of intestinal immune cell functions and viral pathogenesis. Microorganisms. 2023 Jul; 11(7): 1849. doi: 10.3390/microorganisms11071849. DOI: https://doi.org/10.3390/microorganisms11071849
Utkurovna SG, Farkhodovna KF, Orifjonovna OF. Features of immune mechanisms in the development of pathological processes. Achievements of Science and Education. 2022; 2(82): 108-15.
Shaheen WA, Quraishi MN, Iqbal TH. Gut microbiome and autoimmune disorders. Clinical and Experimental Immunology. 2022 Aug; 209(2): 161-74. doi: 10.1093/cei/uxac057. DOI: https://doi.org/10.1093/cei/uxac057
Mansour SR, Moustafa MA, Saad BM, Hamed R, Moustafa AR. Impact of diet on human gut microbiome and disease risk. New Microbes and New Infections. 2021 May; 41: 100845. doi: 10.1016/j.nmni.2021.100845. DOI: https://doi.org/10.1016/j.nmni.2021.100845
Imbrea AM, Balta I, Dumitrescu G, McCleery D, Pet I, Iancu T et al. Exploring the Contribution of Campylobacter jejuni to Post-Infectious Irritable Bowel Syndrome: A Literature Review. Applied Sciences. 2024 Apr; 14(8): 3373. doi: 10.3390/app14083373. DOI: https://doi.org/10.3390/app14083373
Winiarska-Mieczan A, Tomaszewska E, Donaldson J, Jachimowicz K. The role of nutritional factors in the modulation of the composition of the gut microbiota in people with autoimmune diabetes. Nutrients. 2022 Jun; 14(12): 2498. doi: 10.3390/nu14122498. DOI: https://doi.org/10.3390/nu14122498
Greslehner GP. Not by structures alone: Can the immune system recognize microbial functions?. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 2020 Dec; 84: 101336. doi: 10.1016/j.shpsc.2020.101336. DOI: https://doi.org/10.1016/j.shpsc.2020.101336
Zouali M. B lymphocytes, the gastrointestinal tract and autoimmunity. Autoimmunity Reviews. 2021 Apr; 20(4): 102777. doi: 10.1016/j.autrev.2021.102777. DOI: https://doi.org/10.1016/j.autrev.2021.102777
Rocchi G, Giovanetti M, Benedetti F, Borsetti A, Ceccarelli G, Zella D et al. Gut microbiota and COVID-19: potential implications for disease severity. Pathogens. 2022 Sep; 11(9): 1050. doi: 10.3390/pathogens11091050. DOI: https://doi.org/10.3390/pathogens11091050
Drago L, Zuccotti GV, Romanò CL, Goswami K, Villafañe JH, Mattina R et al. Oral–gut microbiota and arthritis: is there an evidence-based axis?. Journal of Clinical Medicine. 2019 Oct; 8(10): 1753. doi: 10.3390/jcm8101753. DOI: https://doi.org/10.3390/jcm8101753
Brown J, Quattrochi B, Everett C, Hong BY, Cervantes J. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis. Multiple Sclerosis Journal. 2021 May; 27(6): 807-11. doi: 10.1177/1352458520928301. DOI: https://doi.org/10.1177/1352458520928301
Balakrishnan B and Taneja V. Microbial modulation of the gut microbiome for treating autoimmune diseases. Expert Review of Gastroenterology & Hepatology. 2018 Oct; 12(10): 985-96. doi: 10.1080/17474124.2018.1517044. DOI: https://doi.org/10.1080/17474124.2018.1517044
Liu XW, Li HL, Ma CY, Shi TY, Wang TY, Yan D et al. Predicting the role of the human gut microbiome in type 1 diabetes using machine-learning methods. Briefings in Functional Genomics. 2024 Feb; 23(4): 464–474. doi: 10.1093/bfgp/elae004. DOI: https://doi.org/10.1093/bfgp/elae004
Heravi FS. Gut Microbiota and Autoimmune Diseases: Mechanisms, Treatment, Challenges, and Future Recommendations. Current Clinical Microbiology Reports. 2024 Jan; 11(1): 18-33. doi: 10.1007/s40588-023-00213-6. DOI: https://doi.org/10.1007/s40588-023-00213-6
He T and Qian W. Immunologic derangement caused by intestinal dysbiosis and stress is the intrinsic basis of reactive arthritis. Zeitschrift für Rheumatologie. 2024 Feb; 25:1-9. doi: 10.1007/s00393-024-01480-4. DOI: https://doi.org/10.1007/s00393-024-01480-4
Dopkins N, Becker W, Miranda K, Walla M, Nagarkatti P, Nagarkatti M. Tryptamine attenuates experimental multiple sclerosis through activation of aryl hydrocarbon receptor. Frontiers in Pharmacology. 2021 Jan; 11: 619265. doi: 10.3389/fphar.2020.619265. DOI: https://doi.org/10.3389/fphar.2020.619265
Akuzum B and Lee JY. Context-dependent regulation of type17 immunity by microbiota at the intestinal barrier. Immune Network. 2022 Dec; 22(6): e46. doi: 10.4110/in.2022.22.e46. DOI: https://doi.org/10.4110/in.2022.22.e46
Cardoso RF. Beyond Th1 and Treg: Intestinal T helper cells in disease and tolerance. Karolinska Institutet (Sweden); 2022.
Elson DJ and Kolluri SK. Tumor-suppressive functions of the aryl hydrocarbon receptor (AhR) and AhR as a therapeutic target in cancer. Biology. 2023 Mar; 12(4): 526. doi: 10.3390/biology12040526. DOI: https://doi.org/10.3390/biology12040526
Wu J, Wang S, Zheng B, Qiu X, Wang H, Chen L. Modulation of gut microbiota to enhance effect of checkpoint inhibitor immunotherapy. Frontiers in Immunology. 2021 Jun; 12: 669150. doi: 10.3389/fimmu.2021.669150. DOI: https://doi.org/10.3389/fimmu.2021.669150
Abdulla OA. Role of AhR Ligands in Immune Modulation to Suppress Inflammation Through the Regulation of Microrna and Gut Microbiome. 2021.
Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Frontiers in Immunology. 2020 Feb; 11: 282. doi: 10.3389/fimmu.2020.00282. DOI: https://doi.org/10.3389/fimmu.2020.00282
Topi S, Bottalico L, Charitos IA, Colella M, Di Domenico M, Palmirotta R et al. Biomolecular mechanisms of autoimmune diseases and their relationship with the resident microbiota: friend or foe?. Pathophysiology. 2022 Sep; 29(3): 507-36. doi: 10.3390/pathophysiology29030041. DOI: https://doi.org/10.3390/pathophysiology29030041
Hua Z and Hou B. The role of B cell antigen presentation in the initiation of CD4+ T cell response. Immunological reviews. 2020 Jul;296(1):24-35. doi: 10.1111/imr.12859. DOI: https://doi.org/10.1111/imr.12859
Ma R, Su H, Jiao K, Liu J. Role of Th17 cells, Treg cells, and Th17/Treg imbalance in immune homeostasis disorders in patients with chronic obstructive pulmonary disease. Immunity, Inflammation and Disease. 2023 Feb; 11(2): e784. doi: 10.1002/iid3.784. DOI: https://doi.org/10.1002/iid3.784
Ruff WE, Greiling TM, Kriegel MA. Host–microbiota interactions in immune-mediated diseases. Nature Reviews Microbiology. 2020 Sep; 18(9): 521-38. doi: 10.1038/s41579-020-0367-2. DOI: https://doi.org/10.1038/s41579-020-0367-2
Yazici D, Ogulur I, Kucukkase O, Li M, Rinaldi AO, Pat Y et al. Epithelial barrier hypothesis and the development of allergic and autoimmune diseases. Allergo Journal International. 2022 Jun; 31(4): 91-102. doi: 10.1007/s40629-022-00211-y. DOI: https://doi.org/10.1007/s40629-022-00211-y
Johnson D and Jiang W. Infectious diseases, autoantibodies, and autoimmunity. Journal of Autoimmunity. 2023 May; 137: 102962. doi: 10.1016/j.jaut.2022.102962. DOI: https://doi.org/10.1016/j.jaut.2022.102962
Kristyanto H, Blomberg NJ, Slot LM, van der Voort EI, Kerkman PF, Bakker A et al. Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis. Science translational medicine. 2020 Nov; 12(570): eaaz5327. doi: 10.1126/scitranslmed.aaz5327. DOI: https://doi.org/10.1126/scitranslmed.aaz5327
Ivashkin V, Poluektov Y, Kogan E, Shifrin O, Sheptulin A, Kovaleva A et al. Disruption of the pro-inflammatory, anti-inflammatory cytokines and tight junction proteins expression, associated with changes of the composition of the gut microbiota in patients with irritable bowel syndrome. PLOS One. 2021 Jun; 16(6): e0252930. doi: 10.1371/journal.pone.0252930. DOI: https://doi.org/10.1371/journal.pone.0252930
Quaranta G, Guarnaccia A, Fancello G, Agrillo C, Iannarelli F, Sanguinetti M et al. Fecal microbiota transplantation and other gut microbiota manipulation strategies. Microorganisms. 2022 Dec; 10(12): 2424. doi: 10.3390/microorganisms10122424. DOI: https://doi.org/10.3390/microorganisms10122424
Hossein Javanmard G and Javanmard S. Exploring the Impact of Antibiotic Consumption on Cognitive Functions in Individuals with Altered Gut Microbiome: A Comparative Analysis. Journal of Pharmaceutical Care & Health Systems. 2024 Mar; 10(1): 311. doi: 10.35248/2376-0419.23.10.311.
Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: an autoimmune or autoinflammatory disease?. Nature Reviews Rheumatology. 2021 Jul; 17(7): 387-404. doi: 10.1038/s41584-021-00625-y. DOI: https://doi.org/10.1038/s41584-021-00625-y
Kamareddine L, Najjar H, Sohail MU, Abdulkader H, Al-Asmakh M. The microbiota and gut-related disorders: insights from animal models. Cells. 2020 Nov; 9(11): 2401. doi: 10.3390/cells9112401. DOI: https://doi.org/10.3390/cells9112401
Montgomery TL, Künstner A, Kennedy JJ, Fang Q, Asarian L, Culp-Hill R et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proceedings of the National Academy of Sciences. 2020 Nov; 117(44) :27516-27. doi: 10.1073/pnas.2002817117. DOI: https://doi.org/10.1073/pnas.2002817117
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pakistan Journal of Health Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments