Synthesis, Characterization and Drug Release Study of Novel Guided Tissue Regeneration Membranes Containing Drug Loaded Chitosan Nanoparticles
Tissue Regeneration Membranes Containing Chitosan Nanoparticles
DOI:
https://doi.org/10.54393/pjhs.v5i03.795Keywords:
Chitosan Nanoparticles, GTR Membrane, Drug Loaded Nanoparticles, CiprofloxacinAbstract
Periodontitis is an inflammatory disease which can cause the destruction of the supporting tissues of the tooth leading to tooth loss. The guided tissue regeneration is considered as a gold standard for its treatment but the re-infection of surgical site limits its overall success. Objective: To synthesize novel monolayer guided tissue regeneration (GTR) membrane containing drug loaded chitosan nanoparticles and to evaluate the drug release from the synthesized GTR membranes. Methods: The chitosan nanoparticles containing ciprofloxacin were synthesized by the ionotropic gelation method and these synthesized nanoparticles were added into chitosan GTR membrane fabricated by the freeze gelation method. For comparison GTR membrane was prepared as a control by freeze gelation method in which the drug was added directly. The prepared membranes were characterized by the SEM and FTIR. The drug release was measured from the membrane samples in the phosphate buffer saline (PBS) at 1, 3, 5, 7 and 9 days. Results: The GTR membrane containing the ciprofloxacin loaded chitosan nanoparticles showed fast drug release as compared to the membrane in which the ciprofloxacin was added directly. Conclusions: The inclusion of antibiotic loaded chitosan nanoparticles can increase the drug release from GTR membrane.
References
Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. The Lancet. 2005 Nov; 366(9499): 1809-20. doi: 10.1016/S0140-6736(05)67728-8. DOI: https://doi.org/10.1016/S0140-6736(05)67728-8
Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dental Materials. 2012 Jul; 28(7): 703-21. doi: 10.1016/j.dental.2012.04.022. DOI: https://doi.org/10.1016/j.dental.2012.04.022
Meyle J and Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontology 2000. 2015 Oct; 69(1): 7-17. doi: 10.1111/prd.12104. DOI: https://doi.org/10.1111/prd.12104
American Academy of Periodontology. Treatment of plaque-induced gingivitis, chronic periodontitis, and other clinical conditions. Journal of Periodontology. 2001 Sep; 72(12): 1790-800. doi: 10.1902/jop.2001.72.12.1790. DOI: https://doi.org/10.1902/jop.2001.72.12.1790
Darveau RP, Tanner A, Page RC. The microbial challenge in periodontitis. Periodontology 2000. 1997 Jun; 14(1): 12-32. doi: 10.1111/j.1600-0757.1997.tb00190.x. DOI: https://doi.org/10.1111/j.1600-0757.1997.tb00190.x
Kostopoulos L and Karring T. Susceptibility of GTR‐regenerated periodontal attachment to ligature‐induced periodontitis: An experiment in the monkey. Journal of Clinical Periodontology. 2004 May; 31(5): 336-40. doi: 10.1111/j.1600-051X.2004.00487.x. DOI: https://doi.org/10.1111/j.1600-051X.2004.00487.x
Sculean A, Nikolidakis D, Schwarz F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evidence: a systematic review. Journal of Clinical Periodontology. 2008 Sep; 35: 106-16. doi: 10.1111/j.1600-051X.2008.01263.x. DOI: https://doi.org/10.1111/j.1600-051X.2008.01263.x
Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. Journal of Clinical Periodontology. 1982 Aug; 9(4): 290-6. doi: 10.1111/j.1600-051X.1982.tb02095.x. DOI: https://doi.org/10.1111/j.1600-051X.1982.tb02095.x
Taba Jr M, Jin Q, Sugai JV, Giannobile WV. Current concepts in periodontal bioengineering. Orthodontics & Craniofacial Research. 2005 Nov; 8(4): 292-302. doi: 10.1111/j.1601-6343.2005.00352.x. DOI: https://doi.org/10.1111/j.1601-6343.2005.00352.x
Bottino MC, Jose MV, Thomas V, Dean DR, Janowski GM. Freeze-dried acellular dermal matrix graft: effects of rehydration on physical, chemical, and mechanical properties. Dental Materials. 2009 Sep; 25(9): 1109-15. doi: 10.1016/j.dental.2009.03.007. DOI: https://doi.org/10.1016/j.dental.2009.03.007
Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013 Nov; 34(34): 8533-54. doi: 10.1016/j.biomaterials.2013.07.089. DOI: https://doi.org/10.1016/j.biomaterials.2013.07.089
Lin WC, Yao C, Huang TY, Cheng SJ, Tang CM. Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dental Materials. 2019 May; 35(5): 751-62. doi: 10.1016/j.dental.2019.02.023. DOI: https://doi.org/10.1016/j.dental.2019.02.023
Bottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL. Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clinical Oral Investigations. 2014 Dec; 18: 2151-8. doi: 10.1007/s00784-014-1201-x. DOI: https://doi.org/10.1007/s00784-014-1201-x
Kong LX, Peng Z, Li SD, Bartold PM. Nanotechnology and its role in the management of periodontal diseases. Periodontology 2000. 2006 Feb; 40(1): 184. doi: 10.1111/j.1600-0757.2005.00143.x. DOI: https://doi.org/10.1111/j.1600-0757.2005.00143.x
Rotar O, Tenedja K, Arkhelyuk A, Rotar VI, Davidencko IS, Fediv VI. Preparation of chitosan nanoparticles loaded with glutathione for diminishing tissue ischemia-reperfusion injury. International Journal of Advanced Engineering and Nano Technology. 2014 May; 1(6): 19-23.
Yuan Z, Ye Y, Gao F, Yuan H, Lan M, Lou K, et al. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. International Journal of Pharmaceutics. 2013 Mar; 446(1-2): 191-8. doi: 10.1016/j.ijpharm.2013.02.024. DOI: https://doi.org/10.1016/j.ijpharm.2013.02.024
El-Alfy EA, El-Bisi MK, Taha GM, Ibrahim HM. Preparation of biocompatible chitosan nanoparticles loaded by tetracycline, gentamycin and ciprofloxacin as novel drug delivery system for improvement the antibacterial properties of cellulose based fabrics. International Journal of Biological Macromolecules. 2020 Oct; 161: 1247-60. doi: 10.1016/j.ijbiomac.2020.06.118. DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.118
Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian Journal of Pharmaceutical Sciences. 2018 Jan; 13(1): 72-81. doi: 10.1016/j.ajps.2017.09.001. DOI: https://doi.org/10.1016/j.ajps.2017.09.001
Yang HC and Hon MH. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchemical Journal. 2009 May; 92(1): 87-91. doi: 10.1016/j.microc.2009.02.001. DOI: https://doi.org/10.1016/j.microc.2009.02.001
Qashqoosh MT, Alahdal FA, Manea YK, Zakariya SM, Naqvi S. Synthesis, characterization and spectroscopic studies of surfactant loaded antiulcer drug into Chitosan nanoparticles for interaction with bovine serum albumin. Chemical Physics. 2019 Nov; 527: 110462. doi: 10.1016/j.chemphys.2019.110462. DOI: https://doi.org/10.1016/j.chemphys.2019.110462
Jamil B, Habib H, Abbasi S, Nasir H, Rahman A, Rehman A, et al. Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydrate Polymers. 2016 Jan; 136: 682-91. doi: 10.1016/j.carbpol.2015.09.078. DOI: https://doi.org/10.1016/j.carbpol.2015.09.078
Ho MH, Hsieh CC, Hsiao SW, Thien DV. Fabrication of asymmetric chitosan GTR membranes for the treatment of periodontal disease. Carbohydrate Polymers. 2010 Mar; 79(4): 955-63. doi: 10.1016/j.carbpol.2009.10.031. DOI: https://doi.org/10.1016/j.carbpol.2009.10.031
Ma S, Adayi A, Liu Z, Li M, Wu M, Xiao L, et al. Asymmetric collagen/chitosan membrane containing minocycline-loaded chitosan nanoparticles for guided bone regeneration. Scientific Reports. 2016 Aug; 6(1): 31822. doi: 10.1038/srep31822. DOI: https://doi.org/10.1038/srep31822
Sahoo SU, Chakraborti CK, Mishra SC, Nanda UN, Naik S. FTIR and XRD investigations of some fluoroquinolones. 2011 Apr; 3(3): 165-70.
Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. International Journal of Pharmaceutics. 2002 Dec; 249(1-2): 139-47. doi: 10.1016/S0378-5173(02)00486-6. DOI: https://doi.org/10.1016/S0378-5173(02)00486-6
Yuan Q, Shah J, Hein SR, Misra RD. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomaterialia. 2010 Mar; 6(3): 1140-8. doi: 10.1016/j.actbio.2009.08.027. DOI: https://doi.org/10.1016/j.actbio.2009.08.027
Morgen M, Bloom C, Beyerinck R, Bello A, Song W, Wilkinson K, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharmaceutical Research. 2012 Feb; 29: 427-40. doi: 10.1007/s11095-011-0558-7. DOI: https://doi.org/10.1007/s11095-011-0558-7
Owen GR, Jackson JK, Chehroudi B, Brunette DM, Burt HM. An in vitro study of plasticized poly (lactic‐co‐glycolic acid) films as possible guided tissue regeneration membranes: material properties and drug release kinetics. Journal of Biomedical Materials Research Part A. 2010 Dec; 95(3): 857-69. doi: 10.1002/jbm.a.32865. DOI: https://doi.org/10.1002/jbm.a.32865
He M, Xue J, Geng H, Gu H, Chen D, Shi R, et al. Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release. Applied Surface Science. 2015 Apr; 335: 121-9. doi: 10.1016/j.apsusc.2015.02.037. DOI: https://doi.org/10.1016/j.apsusc.2015.02.037
Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, et al. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano. 2015 Feb; 9(2): 1600-12. doi: 10.1021/nn506255e. DOI: https://doi.org/10.1021/nn506255e
Chen X, Xu C, He H. Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochemical and Biophysical Research Communications. 2019 Sep; 516(4): 1085-9. doi: 10.1016/j.bbrc.2019.06.163. DOI: https://doi.org/10.1016/j.bbrc.2019.06.163
Yar M, Farooq A, Shahzadi L, Khan AS, Mahmood N, Rauf A, et al. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Materials Science and Engineering: C. 2016 Jul; 64: 148-56. doi: 10.1016/j.msec.2016.03.072. DOI: https://doi.org/10.1016/j.msec.2016.03.072
Zhang H, Ma H, Zhang R, Wang K, Liu J. Construction and characterization of antibacterial PLGA/wool keratin/ornidazole composite membranes for periodontal guided tissue regeneration. Journal of Biomaterials Applications. 2020 Apr; 34(9): 1267-81. doi: 10.1177/0885328220901396. DOI: https://doi.org/10.1177/0885328220901396
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pakistan Journal of Health Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments