Green Nanoparticles in Sustainable Therapeutics and Future Sustainability

Green Nanoparticles in Sustainable Therapeutics

Authors

  • Tasmiya Kamran Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Arsheen Rehman Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Aaroj Malik Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Mahrukh Siddiqui Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Rehan Ahmad Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Saad Muhammad Islam Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Abu Hurera Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Huda Rehman Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Manam Walait Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
  • Salman Walayt RLKU Medical College, Lahore, Pakistan

DOI:

https://doi.org/10.54393/pjhs.v4i06.568

Keywords:

Green Nanoparticles, Sustainable Therapeutics, Toxicity

Abstract

Green nanoparticles (GNPs) are being produced from microbial and plant sources and have numerous applications in various fields. The article focuses on the NPs that provide various focal points in the many scientific and technological fields for the cutting-edge uses of nanoparticles. Due to their toxicity, cost-effectiveness, ease of use, and environmental friendliness, green NPs are extremely important. It is closely observed how important green NPs are to the development of science and technology in the context of sustainable therapeutics. The only issue with green nanoparticles is occasionally how toxic they can be. A sustainable future, which the entire world looks forward to, is directly related to green nanoparticles and their role in numerous applications.

References

Hebeish A, El-Naggar ME, Fouda MM, Ramadan MA, Al-Deyab SS, El-Rafie MH. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydrate Polymers. 2011 Aug; 86(2): 936-40. doi: 10.1016/j.carbpol.2011.05.048. DOI: https://doi.org/10.1016/j.carbpol.2011.05.048

Jha AK, Prasad K, Prasad K. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochemical Engineering Journal. 2009 Mar; 43(3): 303–6. doi: 10.1016/j.bej.2008.10.016. DOI: https://doi.org/10.1016/j.bej.2008.10.016

Gour A and Jain NK. Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology. 2019 Dec; 47(1): 844-51. doi: 10.1080/21691401.2019.1577878. DOI: https://doi.org/10.1080/21691401.2019.1577878

Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, et al. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environmental Science and Pollution Research. 2018 Apr; 25: 10164-83. doi: 10.1007/s11356-017-9912-6. DOI: https://doi.org/10.1007/s11356-017-9912-6

Pal G, Rai P, Pandey A. Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; 2019. 1–26. doi: 10.1016/B978-0-08-102579-6.00001-0. DOI: https://doi.org/10.1016/B978-0-08-102579-6.00001-0

Soni M, Mehta P, Soni A, Goswami GK. Green Nanoparticles: Synthesis and Applications. Journal of Biotechnology and Biochemistry. 2018 May; 4(3): 78–83.

Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GE. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015 Oct; 8(11): 7278-308. doi: 10.3390/ma8115377. DOI: https://doi.org/10.3390/ma8115377

Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия). 2014; 6(1): 35-44. doi: 10.32607/20758251-2014-6-1-35-44. DOI: https://doi.org/10.32607/20758251-2014-6-1-35-44

Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry. 2020 Oct; 8: 799. doi: 10.3389/fchem.2020.00799. DOI: https://doi.org/10.3389/fchem.2020.00799

Bharadwaj KK, Rabha B, Pati S, Sarkar T, Choudhury BK, Barman A, et al. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules. 2021 Oct; 26(21): 6389. doi: 10.3390/molecules26216389. DOI: https://doi.org/10.3390/molecules26216389

Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J, Southam G, et al. Gold biomineralization by a metallophore from a gold-associated microbe. Nature Chemical Biology. 2013 Apr; 9(4): 241–3. doi: 10.1038/nchembio.1179. DOI: https://doi.org/10.1038/nchembio.1179

Husain S, Sardar M, Fatma T. Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World Journal of Microbiology Biotechnology. 2015 Aug; 31(8): 1279–83. doi: 10.1007/s11274-015-1869-3. DOI: https://doi.org/10.1007/s11274-015-1869-3

Birla SS, Gaikwad SC, Gade AK, Rai MK. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. The Scientific World Journal. 2013 Oct; 2013: 1-12. doi: 10.1155/2013/796018. DOI: https://doi.org/10.1155/2013/796018

Husseiny SM, Salah TA, Anter HA. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University Journal of Basic and Applied Sciences. 2015 Sep; 4(3): 225-31. doi: 10.1016/j.bjbas.2015.07.004. DOI: https://doi.org/10.1016/j.bjbas.2015.07.004

Korbekandi H, Ashari Z, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iranian Journal of Pharmaceutical Research: IJPR. 2013 May; 12(3): 289.

Hajian A, Lindstrom SB, Pettersson T, Hamedi MM, Wågberg L. Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Letters. 2017 Mar; 17(3): 1439-47. doi: 10.1021/acs.nanolett.6b04405. DOI: https://doi.org/10.1021/acs.nanolett.6b04405

Faramarzi S, Anzabi Y, Jafarizadeh-Malmiri H. Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Archives of Microbiology. 2020 Jul; 202(5): 1203-9. doi: 10.1007/s00203-020-01831-0. DOI: https://doi.org/10.1007/s00203-020-01831-0

Kotcherlakota R, Das S, Patra CR. Therapeutic applications of green-synthesized silver nanoparticles. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier. 2019. 389–428. doi: 10.1016/B978-0-08-102579-6.00017-4. DOI: https://doi.org/10.1016/B978-0-08-102579-6.00017-4

Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Molecular Pharmaceutics. 2018 Nov; 16(1): 1-23. doi: 10.1021/acs.molpharmaceut.8b00810. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00810

Cheng J, Gu YJ, Cheng SH, Wong WT. Surface functionalized gold nanoparticles for drug delivery. Journal of Biomedical Nanotechnology. 2013 Aug; 9(8): 1362-9. doi: 10.1166/jbn.2013.1536. DOI: https://doi.org/10.1166/jbn.2013.1536

Yang Z, Deng W, Zhang X, An Y, Liu Y, Yao H, et al. Opportunities and challenges of nanoparticles in digestive tumours as anti-angiogenic therapies. Frontiers in Oncology. 2022 Jan; 11: 5581. doi: 10.3389/fonc.2021.789330. DOI: https://doi.org/10.3389/fonc.2021.789330

Raj Preeth D, Shairam M, Suganya N, Hootan R, Kartik R, Pierre K, et al. Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer. Journal of Biological Inorganic Chemistry. 2019 Aug; 24(5): 633–45. doi: 10.1007/s00775-019-01676-z. DOI: https://doi.org/10.1007/s00775-019-01676-z

Sheikpranbabu S, Kalishwaralal K, Lee K jin, Vaidyanathan R, Eom SH, Gurunathan S. The inhibition of advanced glycation end-products-induced retinal vascular permeability by silver nanoparticles. Biomaterials. 2010 Mar; 31(8): 2260–71. doi: 10.1016/j.biomaterials.2009.11.076. DOI: https://doi.org/10.1016/j.biomaterials.2009.11.076

Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International Journal of Nanomedicine. 2017 Apr; 12: 2957. doi: 10.2147/IJN.S127683. DOI: https://doi.org/10.2147/IJN.S127683

Kumar CG and Poornachandra Y. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids and Surfaces B Bio interfaces. 2015 Jan; 125: 110–9. doi: 10.1016/j.colsurfb.2014.11.025. DOI: https://doi.org/10.1016/j.colsurfb.2014.11.025

Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research. 2001 Jan; 50(6): 537-46.

Podsȩdek A, Majewska I, Redzynia M, Sosnowska D, Koziołkiewicz M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. Journal of Agricultural Food Chemistry. 2014 May; 62(20): 4610–7. doi: 10.1021/jf5008264. DOI: https://doi.org/10.1021/jf5008264

Govindappa M, Hemashekhar B, Arthikala MK, Ravishankar Rai V, Ramachandra YL. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Physics. 2018 Jun; 9: 400–8. doi: 10.1016/j.rinp.2018.02.049. DOI: https://doi.org/10.1016/j.rinp.2018.02.049

Jeyaraj M, Varadan S, Anthony KJP, Murugan M, Raja A, Gurunathan S. Antimicrobial and anticoagulation activity of silver nanoparticles synthesized from the culture supernatant of Pseudomonas aeruginosa. Journal of Industrial and Engineering Chemistry. 2013 Jul; 19(4): 1299–303. doi: 10.1016/j.jiec.2012.12.031. DOI: https://doi.org/10.1016/j.jiec.2012.12.031

Azeez MA, Lateef A, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, et al. Biomedical Applications of Cocoa Bean Extract-Mediated Silver Nanoparticles as Antimicrobial, Larvicidal and Anticoagulant Agents. Journal of Cluster Science. 2017 Jan; 28(1): 149–64. doi: 10.1007/s10876-016-1055-2. DOI: https://doi.org/10.1007/s10876-016-1055-2

Augustine R, Mathew AP, Sosnik A. Metal oxide nanoparticles as versatile therapeutic agents modulating cell signaling pathways: linking nanotechnology with molecular medicine. Applied Materials Today. 2017 Jun; 7: 91-103. doi: 10.1016/j.apmt.2017.01.010. DOI: https://doi.org/10.1016/j.apmt.2017.01.010

Younis NS, Mohamed ME, El Semary NA. Green synthesis of silver nanoparticles by the Cyanobacteria synechocystis sp.: Characterization, antimicrobial and diabetic wound-healing actions. Marine Drugs. 2022 Jan; 20(1): 56. doi: 10.3390/md20010056. DOI: https://doi.org/10.3390/md20010056

Iruretagoyena MI, Tobar JA, González PA, Sepúlveda SE, Figueroa CA, Burgos RA, et al. Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. Journal of Pharmacology and Experimental Therapeutics. 2005 Jan; 312(1): 366–72. doi: 10.1124/jpet.104.072512. DOI: https://doi.org/10.1124/jpet.104.072512

Mohd Sam MF, Tahir MN, Rajiani I, Muslan N. Green Technology Compliance in Malaysia for Sustainable Business. Journal of Global Management. 2011; 2(1): 55-65.

Aithal S and Aithal PS. Green and eco-friendly Nanotechnology–concepts and industrial prospects. International Journal of Management, Technology, and Social Sciences (IJMTS). 2021 Feb; 6(1): 1-31. doi: 10.47992/IJMTS.2581.6012.0127. DOI: https://doi.org/10.47992/IJMTS.2581.6012.0127

Thakur S, Thakur S, Kumar R. Bio-nanotechnology and its role in agriculture and food industry. Journal of Molecular and Genetic Medicine. 2018; 12(324): 1747-0862. doi: 10.4172/1747-0862.1000324. DOI: https://doi.org/10.4172/1747-0862.1000324

Khan SH. Green nanotechnology for the environment and sustainable development. Green materials for wastewater treatment. 2020 Jan:13-46. doi: 10.1007/978-3-030-17724-9_2. DOI: https://doi.org/10.1007/978-3-030-17724-9_2

Kumari SC, Dhand V, Padma PN. Green synthesis of metallic nanoparticles: A review. Nanomaterials. 2021 Jan: 259-81. doi: 10.1016/B978-0-12-822401-4.00022-2. DOI: https://doi.org/10.1016/B978-0-12-822401-4.00022-2

Khan SA and Lee CS. Green biological synthesis of nanoparticles and their biomedical applications. Applications of nanotechnology for green synthesis. Nanotechnology in the Life Sciences. 2020 Jul: 247-80. doi: 10.1007/978-3-030-44176-0_10. DOI: https://doi.org/10.1007/978-3-030-44176-0_10

Eltayeb TK, Zailani S, Filho WL. Green business among certified companies in Malaysia towards environmental sustainability: benchmarking on the drivers, initiatives and outcomes. International Journal of Environmental Technology and Management. 2010 Jan; 12(1): 95-125. doi: 10.1504/IJETM.2010.029983. DOI: https://doi.org/10.1504/IJETM.2010.029983

Downloads

Published

2023-06-30
CITATION
DOI: 10.54393/pjhs.v4i06.568
Published: 2023-06-30

How to Cite

Kamran, T. ., Rehman, A., Malik, A., Siddiqui, M. ., Ahmad, R. ., Muhammad Islam, S. ., Hurera, A. ., Rehman, H. ., Walait, M. ., & Walayt, S. . (2023). Green Nanoparticles in Sustainable Therapeutics and Future Sustainability: Green Nanoparticles in Sustainable Therapeutics. Pakistan Journal of Health Sciences, 4(06), 02–09. https://doi.org/10.54393/pjhs.v4i06.568

Issue

Section

Review Article

Plaudit

Most read articles by the same author(s)